Double Charmonium production at LHC

Alexey Luchinsky

Institute for High Energy Physics, Protvino, Russia

in collaboration with:

Anatolii Likhoded and Stanislav Poslavsky (IHEP, Protvino)

13 June 2016

- Single charmonim production at LHC was studied in detail
 - LO ($gg \rightarrow Q$), collinear approximation \Rightarrow no p_T distribution, no ψ
 - k_T factorization
 - $\circ \mathsf{NLO}^*: gg \to \mathcal{Q}g$
- Double charmonium production era began recently
 - DPS
 - SPS LO ($gg \rightarrow Q_1 Q_2$), collinear approximation \Rightarrow no p_T^{pair} , $\psi \chi$, $\psi \eta_c$
 - SPS NLO* $(gg \rightarrow Q_1 Q_2 g)$
- Was studied in [Lansberg, Shao, PRL111.122001], only $\psi\eta_{c}$
- Now we present:
 - $\circ~$ Novel results for $J/\psi\chi_c$
 - $\,\circ\,$ Updated results for $\psi\psi$ @ 13 TeV

The model

- We use LO CS NRQCD
- S- and P-wave projectors are

$$\begin{split} J/\psi : \quad \bar{v}(p/2)u(p/2) &\to \langle O_{S}\rangle \hat{\epsilon} \left(\hat{P} + M\right) \delta^{ij} \\ \chi_{c} : \quad \bar{v}u \to \langle O_{P}\rangle \frac{\partial}{\partial q_{\mu}} \left(\frac{\hat{P}_{2}}{2} - \hat{q} - m_{c}\right) \hat{\epsilon}_{S} \left(\hat{P} + M\right) \left(\frac{\hat{P}_{2}}{2} + \hat{q} + m_{c}\right) \delta^{ij} \end{split}$$

- $\langle O_{S,P} \rangle$ from experiment
- ▶ CAS: Wolfram Mathematica and Redberry (ⓒS. Poslavsky et al)
- Numerical: explicit ϵ -s, C.-G. coefficients for χ_c
- All possible checks were performed

(One of 72 Feynman diagrams) $\psi \chi_c$ is forbidden by C parity

1) All virtual momenta are fixed

- Each quark carries half of meson's momentum
- Each propagator gives $\sim 1/\hat{s}$
- Overall $\hat{\sigma} \sim 1/\hat{s}^2$

!cross section is suppressed

(One of 72 Feynman diagrams) $\psi \chi_c$ is forbidden by C parity

1) All virtual momenta are fixed

- Each quark carries half of meson's momentum
- Each propagator gives $\sim 1/\hat{s}$
- Overall $\hat{\sigma} \sim 1/\hat{s}^2$

!cross section is suppressed

2) Back-to-back kinematics

- In parton model gluons are collinear to the beam
- No p_T^{pair} distributions
- No $\Delta \phi$ distributions
 - ! Both distributions are observed

(One of 72 Feynman diagrams) $\psi \chi_c$ is forbidden by C parity

1) All virtual momenta are fixed

- Each quark carries half of meson's momentum
- Each propagator gives $\sim 1/\hat{s}$
- Overall $\hat{\sigma} \sim 1/\hat{s}^2$

!cross section is suppressed

2) Back-to-back kinematics

- In parton model gluons are collinear to the beam
- No p_T^{pair} distributions
- No $\Delta \phi$ distributions
 - ! Both distributions are observed

LO is obviuosly non satisfactory

Next-to-leading order ingedients

Leading Order	+	1-loop corrections	+	Real radiation
$2 \rightarrow 2$ kinematics		▶2 → 2 kinematics		▶2 → 3 kinematics
•no p_T and $ \Delta \phi $ distributions		▶no p_T and $ \Delta \phi $ distributions		▶nontrivial p_T and $\Delta \phi $ distributions
small cross section		▶ α_S suppressed		▶ α_{S} suppressed
				▶no kinematical suppression
				$2 \rightarrow 3$ reaction is

Forbidden for $J/\psi\chi_c$ final states due to C-parity conservation

2 → 3 reaction is actually the first non-vanishing contribution

(

In total there are (438)

color-singlet diagrams

are zero due to C-parity (2 gluons can't form 1^{--})

In total there are 438 color-singlet diagrams

Only d_{abc} is left

$\psi\psi$ vs $\psi\chi$ @ NLO*

We can:

- change overall color structure
- switch on/off different types of diagrams

by changing final state

Partonic Reaction Distributions

- No fall with the energy increase
- Infrared divergence for $\chi_{c0,2}$, infrared safe χ_{c1}

Partonic Reaction Distributions

- No fall with the energy increase
- Infrared divergence for $\chi_{c0,2}$, infrared safe χ_{c1}

Hadronic Cross sections

<u>SPS</u>

$$\sigma = f_1 \otimes f_2 \otimes \hat{\sigma}$$

CT10, CT14 pdf sets were used

$$\mu = m_T/2 \dots 2m_T$$

Hadronic Cross sections

 $\sigma = f_1 \otimes f_2 \otimes \hat{\sigma}$

CT10, CT14 pdf sets were used

 $\mu = m_T/2\ldots 2m_T$

<u>DPS</u>

Hadronic Cross sections

<u>SPS</u>

$$\sigma = f_1 \otimes f_2 \otimes \hat{\sigma}$$

CT10, CT14 pdf sets were used

 $\mu = m_T/2 \dots 2m_T$

Cross sections @LHCb ($\sqrt{s} = 13$ TeV, $2 < y < 4.5$)					
Δ, GeV	σ_{LO}, nb	$\sigma_{\textit{NLO}*},\textit{nb}$	$\sigma_{\mathit{fd}}, \mathit{nb}$	$\sigma_{DPS}, \textit{nb}$	σ_{total}, nb
1	12 ± 0.1	5.69 ± 1.1	0.22 ± 0.03	6 F ⊥ 1	13.7 ± 2
3	1.5 ± 0.1	2.99 ± 0.36	0.05 ± 0.01	0.5 ± 1	10.8 ± 1

 $m_{\psi\psi}$

$\Delta \phi$

$\Delta \phi$

Correlations

To quantatize the form difference some correlator is needed

$$egin{aligned} A^{a}_{ij} &= 1 - \left| \left\langle rac{d\sigma_{i}}{da}, rac{d\sigma_{j}}{da}
ight
angle
ight| \end{aligned}$$

Correlations

To quantatize the form difference some correlator is needed

$$A^{a}_{ij} = 1 - \left| \left\langle rac{d\sigma_i}{da}, rac{d\sigma_j}{da}
ight
angle
ight|$$

a/(i,j)	($\psi\psi$,fd)	($\psi\psi$,DPS)	(fd,DPS)
$m_{\psi\psi}$	0.10	0.27	0.05
$p_T^{\psi\psi}$	0.02	0.25	0.39
$\Delta \phi$	0.26	0.87	0.33
Δy	0.10	0.09	0.01
$y_{\psi\psi}$	0.17	0.09	0.02
A_T	0.01	0.01	0.01
p_T^{ψ}	0.00	0.04	0.05
$m{y}_\psi$	0.54	0.45	0.20

Correlations

To quantatize the form difference some correlator is needed

$$egin{aligned} egin{aligned} {A}^{a}_{ij} = 1 - \left| \left\langle rac{d\sigma_i}{da}, rac{d\sigma_j}{da}
ight
angle
ight| \end{aligned}$$

a/(i,j)	($\psi\psi$,fd)	($\psi\psi$,DPS)	(fd,DPS)
$m_{\psi\psi}$	0.10	0.27	0.05
$p_{\mathcal{T}}^{\psi\psi}$	0.02	0.25	0.39
$\Delta \phi$	0.26	0.87	0.33
Δy	0.10	0.09	0.01
$y_{\psi\psi}$	0.17	0.09	0.02
A_T	0.01	0.01	0.01
p_T^ψ	0.00	0.04	0.05
$m{y}_\psi$	0.54	0.45	0.20

Conclusions

- NLO(*) is required for satisfactory description of SPS processes of paired onia production
- ▶ NLO gives comparable or even greater cross section than LO
- Production mechanisms are essentially different for different final states of cc
 pairs
 - by selecting different final states, we thereby switch between different sets of underlying Feynman diagrams
- The most interesting and non trivial signature of different production mechanisms is *azimuthal asymmetry*:
 - perfect for discrimination between SPS ans DPS
- We also have performed same calculations for polarizations in $J/\psi\chi_{\rm c}$, $J/\psi+\eta_{\rm c}$ final state

See soon on arXiv!

Backup slides

Conclusion

$m_{\psi\psi}$, ŝ

Conclusion

 p_T^ψ , y_ψ

 $p_T^{\psi\psi}$, $y_{\psi\psi}$

A_T, Δyi

