Hadron Spectroscopy, exotics and B_c physics at LHCb

Biplab Dey

on behalf of the LHCb collaboration

BEACH 2016, Fairfax, VA

Hadron Spectroscopy & Bc

INTRODUCTION: EXOTICS

• Tetra/pentaquarks were predicted by Gell-Mann/Zweig in 1964

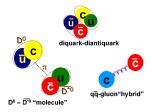
A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN

California Institute of Technology, Pasadena, California

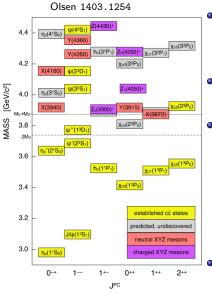
Received 4 January 1964

We then refer to the members $u\bar{s}$, $d\bar{s}$, and $s\bar{s}$ of the triplet as "quarks" θ q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations $(q q q), (q q q q \tilde{q})$ etc., while mesons are made out of $(q\bar{q}), (q q \bar{q} q)$, etc. It is assuming that the lowest

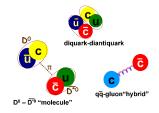

- Yet, only a handful seen, only in the heavy-quark sector.
- LHCb: first dedicated b/c-physics detector at a hadron collider. Excellent vertexing and PID. $B : \Lambda_b^0 : B_s \sim 4 : 2 : 1$ within acceptance.

Introduction

The charmonia XYZ states and exotics



- Exotics revolution in mesonic sector since Belle discovery of *X*(3872) in 2003.
- Several XYZ states @ BESIII, Belle/BaBar, CDF/D0, LHCb/CMS.
- No clear organising principle yet.



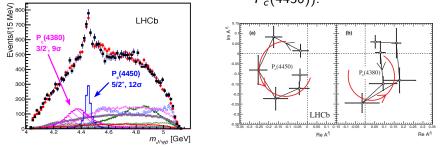
Introduction

The charmonia XYZ states and exotics

- Exotics revolution in mesonic sector since Belle discovery of *X*(3872) in 2003.
- Several XYZ states @ BESIII, Belle/BaBar, CDF/D0, LHCb/CMS.
- No clear organising principle yet.

• Baryonic sector: LHCb discovery of two pentaquarks in 2015.

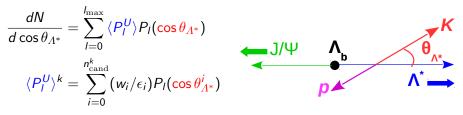
Biplab Dey


Hadron Spectroscopy & Bc

Some selected results @ LHCB

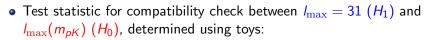
- Pentaquarks in $\Lambda_{\rm b}^0 \rightarrow J/\psi \, pK$: "model-independent" evidence NEW!
- Pentaquark evidence in $\Lambda_{\rm b}^0 \rightarrow J/\psi \, p\pi \, {\sf NEW!}$
- Exotic structures in $B^+ \to X(\to J/\psi \phi) K^+$ NEW!
- LHCb non-confirmation of D0 tetraquark $X(5568)^+
 ightarrow B_s \pi^+$

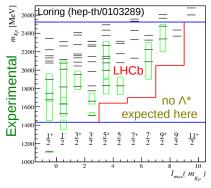
Pentaquarks in $\Lambda^0_{ m b} ightarrow J\!/\psi\, p K^-$ prl 115, 072001


- 2015: LHCb discovers two pentaquark states $P_c
 ightarrow J\!/\psi\, p.$
- Amplitude fit in full 6d. 9 σ and 12 σ evidence for two P_c states.
- Phase-motion distinctive of a resonant structure (for P_c(4450)).

• However, the large number of poorly known Λ^* states makes the amplitude fits inherently model-dependent.

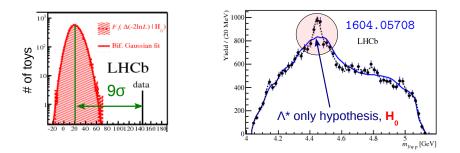
MODEL-INDEPENDENT P_c EVIDENCE (NEW!) 1604.05708


- Test null hypothesis H_0 : no P_c 's are needed and Λ^* resonances can alone explain data.
- Signature of each spin- $J \Lambda^{*J} \to pK$: moments expansion in $\cos \theta_{\Lambda^*}$.


- If J_{max} is the highest Λ^{*J} spin in the $k^{th} m_{pK}$ bin, $I_{\text{max}} = 2J_{\text{max}}$.
- Since the Legendre polynomials P_l forms an orthonormal complete basis; $l_{\max} \rightarrow \infty$ can describe any distribution.
- Data model: hypothesis H_1 with "large" $I_{\text{max}} = 31$.

Testing the "A*-only" hypothesis H_0 1604.05708

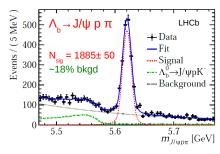
- For a given m_{pK} bin, limit J_{max} .
- High spins not expected at low Λ^* masses. $I_{\rm max} = 2J_{\rm max}$
- Higher moments can only be produced by *P_c* reflections.
- Λ^* -only model H_0 : $I_{\max}(m_{pK})$.

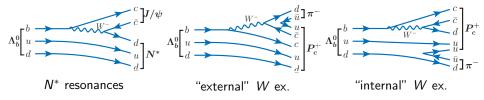

$$\Delta(-2\ln L) \equiv -2\sum_{i=1}^{N_{\text{events}}} w_i \ln \left[\frac{PDF(m_{J/\psi p}|H_0)/I_{H_0}}{PDF(m_{J/\psi p}|H_1)/I_{H_1}}\right]$$

Hadron Spectroscopy & Bc

Quantitative test of the null hypothesis H_0

- Toys generated with $I_{\max}(m_{pK})$ (H_0) show a 9σ deviation wrt Data.
- Null hypothesis rejected with minimal assumption on the Λ^* 's.
- Consistent with the P_c evidence from amplitude fits.


• Same analysis for $Z_c(4200)^+$ claimed by Belle in $B^0 \rightarrow J/\psi K^+\pi^-$ is in the pipeline.

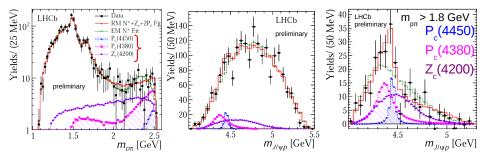

Biplab Dey

Hadron Spectroscopy & Bc

Pentaquarks in $\Lambda^0_{ m b} o J\!/\psi\, p\pi^-~(m NEW!)$ LHCB-Paper-2016-015

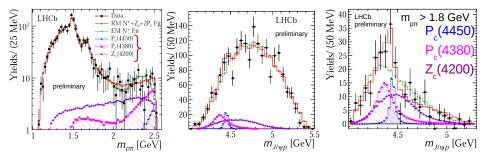
- Observation in a new mode: genuine resonances and not kinematic effects.
- Cabibbo-suppressed mode: ×15 less statistics, ×3 more background.
- Additional "internal" *W*-exchange, compared to $\Lambda^0_{\rm b} \rightarrow J/\psi \, p K^-$.

$\Lambda^0_{ m b} o J\!/\psi\, p\pi^-$: Amplitude models LHCB-Paper-2016-015


- No obvious structure in $m(J/\psi p)$. Need full amplitude analysis.
- Breit-Wigners for all resonances; Flatte for *N*(1535)
- Significant *pπ* S-wave at threshold: non-resonant component.
- Check consistency with the two P_c states from $\Lambda_{\rm b}^0 \to J/\psi \, p K^-$.
- $\Lambda_{\rm b}^0 \rightarrow Z_c(4200)^- (\rightarrow J/\psi \pi^-)p$ also considered from Belle (1408.6457).

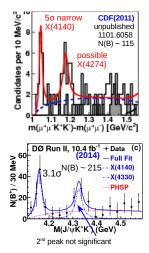
- 15 established N^* states.
- Reduced (RM): central values. Extended (EM): syst. + signif.

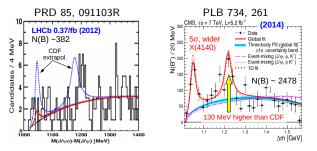
State	J^P	M_0 (MeV)	$\Gamma_0 (MeV)$	RM	EM
NR $p\pi$	$1/2^{-}$	-	-	4	4
N(1440)	$1/2^{+}$	1430	350	-3	4
N(1520)	$3/2^{-}$	1515	115	3	3
N(1535)	$1/2^{-}$	1535	150	4	4
N(1650)	$1/2^{-}$	1655	140	1	4
N(1675)	$5/2^{-}$	1675	150	-3	5
N(1680)	$5/2^{+}$	1685	130	-	- 3
N(1700)	$3/2^{-}$	1700	150	-	- 3
N(1710)	$1/2^+$	1710	100	-	4
N(1720)	$3/2^{+}$	1720	250	3	5
N(1875)	$3/2^{-}$	1875	250	-	3
N(1900)	$3/2^+$	1900	200	-	3
N(2190)	$7/2^{-}$	2190	500	-	3
N(2220)	$9/2^+$	2250	400	-	-
N(2250)	$9/2^{-}$	2275	500	-	-
N(2600)	$11/2^{-}$	2600	650	-	-
N(2300)	$1/2^+$	2300	340	-	3
N(2570)	$5/2^{-}$	2570	250	-	3
Free parameters				40	106


FIT RESULTS LHCB-PAPER-2016-015

• $N^* + 2P_c + Z_c$ gives good fit. Exotic significance is 3.1σ (EM' N^* 's).

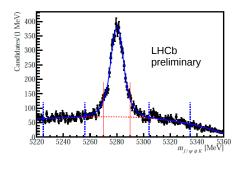
FIT RESULTS LHCB-PAPER-2016-015


• $N^* + 2P_c + Z_c$ gives good fit. Exotic significance is 3.1σ (EM' N^* 's).

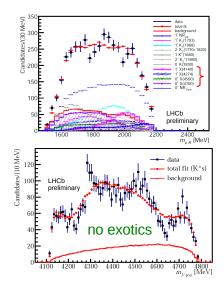

• $R_{\pi/K} \equiv \frac{\mathcal{B}(\Lambda_{\rm b}^0 \to \pi^- P_c^+)}{\mathcal{B}(\Lambda_{\rm b}^0 \to K^- P_c^+)}$ tests P_c^+ production mechanism.

- $R_{\pi/K} \sim 0.05(4380)$, $R_{\pi/K}(4450) \sim 0.033$. Consistent w/ Cabibbo suppression (Cheng, 1509.03708): 0.07-0.08.
- Overall outlook: $J/\psi p\pi$ data is *consistent* with P_c 's seen in $J/\psi pK$.

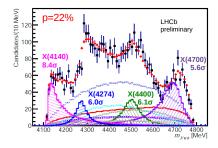
The X(4140) chronology



Also 4.7 σ in prompt p p (2015)

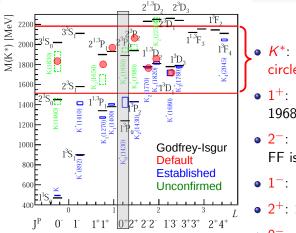

- X(4140): some disagreements over the years from hadron colliders.
- Also some results from the *B*-factories. Not too significant, but neither in contradiction with hadron colliders.

X states in 3/fb LHCB (NEW!) LHCB-Paper-2016-018



- Selection similar to 0.37/fb analysis, with some re-optimization.
- $N_{\rm sig} = 4289 \pm 151$, background fraction $23 \pm 6\%$ inside signal band.
- Largest world dataset for this mode.
- First amplitude analysis in 6d: $m_{\phi K}$ and 5 angular variables
- Three contributing amplitudes that can interfere:
 - $B^+
 ightarrow J\!/\psi\, {\it K}^{*+}(
 ightarrow \phi {\it K}^+)$ (poorly understood ${\it K}^*$ states)
 - $B^+ \to X(\to J/\psi \phi)K^+$ ("exotic" X states)
 - $B^+ \rightarrow Z_c^+ (\rightarrow J/\psi K^+) \phi$ ("exotic" Z states)

FIT RESULTS LHCB-PAPER-2016-018



- No obvious peaking structure in m_{φK}, but rich K* structure underneath.
- Adding Z⁺ → J/ψ K⁺ doesn't have much effect. Only adding X states improves fit.

Exotic structures in $B^+ \rightarrow J/\psi \phi K^+$

Fit results for $K^* \rightarrow \phi K$ lhcb-paper-2016-018

 Good agreement with both theory (Godfrey-Isgur) and previous experiments. • K*: within kinematic limits, red circles are the LHCb fit results.

- 1⁺: NR + 1793(1900) + 1968(1930). FF is 42%.
- 2⁻: 1777(1770) + 1853(1820). FF is 11%.
- 1⁻: 1717(1680). FF is 6.7%.
- 2⁺: 2073(1980). FF is 2.9%.
- 0⁻: consistent with unconfirmed 1874(1830). FF is 2.6%.

Biplab Dey

Fit results for $X \to J/\psi \phi$ lhcb-paper-2016-018

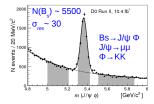
- X(4140) mass consistent with previous measurements. Width larger.
- X(4274) mass/width consistent with unpub. CDF results.
- X(4140) and X(4274): $J^{PC} = 1^{++}$ determined for the 1st time. X(4140) can be a possible $D_s^{\pm} D_s^{*\mp}$ "cusp" (rescattering).
- High $m_{J/\psi\phi}$ mass region probed for the 1st time. Dominated by 0⁻. NR + new X(4500) and X(4700) resonances.

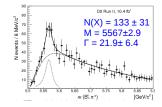
State	J ^{PC}	signif.	Mass	Width	fit frac.
X(4140)	1++	8.4 σ	$4165 \pm 4.5^{+4.6}_{-2.8}$	$83\pm21^{+21}_{-14}$	$13.0 \pm 3.2^{+4.8}_{-2.0}$
X(4274)	1++	6.0 <i>σ</i>	$4273.3 \pm 8.3^{+17.2}_{-3.6}$	$56\pm11^{+8}_{-11}$	$7.1 \pm 2.5^{+3.5}_{-2.4}$
X(4500)	0++	6.1σ	$4506 \pm 11^{+12}_{-15}$	$92\pm21^{+21}_{-20}$	$6.6\pm2.4^{+2.5}_{-2.3}$
X(4700)	0++	6.1σ	$4704 \pm 10^{+14}_{-24}$	$120\pm 31^{+42}_{-33}$	$12\pm5^{+9}_{-5}$

INTERPRETATIONS ALREADY...

postdiction: 1606.03179

Understanding the internal structures of the X(4140), X(4274), X(4500) and X(4700)

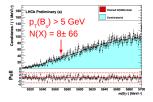

Hua-Xing Chen1, Er-Liang Cui1, Wei Chen2, * Xiang Liu3,4,+ and Shi-Lin Zhu5,6,7±

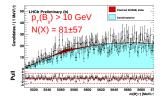

¹School of Physics and Beijing Kay Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China
 ²Department of Physics and Engineering Physics, University of Saskatchewan, Saskatochewan, S7N 5E2, Canada
 ³School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
 ⁴Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of CAS, Lanzhou 730000, China
 ⁵School of Physics and State Kay Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
 ⁶Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
 ⁷Center of Hieh Energy Physics, Peking University, Lonzhou 20071, China

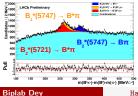
We investigate the newly observed X(4500) and X(4700) based on the diquerk-untidiquark configuration within the framework of QCD sum rules. Both of them may be interpreted as the D-wave coordinate in Ref. [1] $J^{P} = 0^+$, but with opposite color structures, which is the markably similar to the result obtained in Ref. [1] that the X(4140) and X(4274) can be both interpreted as the S-wave coordinate states of $J^{P} = 1^+$, also with opposite color structures. However, the extracted masses and these suggested assignments to these X states do depend on these running quark masses where $m_s(2 \text{ GeV}) = 95 \pm 5 \text{ MeV}$ and $m_s(m_s) = 1.23 \pm 0.09 \text{ GeV}$. As a byproduct, the masses of the hidden-bottom partner states of the X(4500) and X(4700) are extracted to be both around 10.64 GeV, which can be searched for in the T ϕ invariant mass distribution.

D0 CLAIM OF $X(5568)^{\pm} \rightarrow B_s \pi^{\pm}$ 1602.07588

- D0: 5 σ evidence for new "4-flavored" (\overline{bsud}) exotic X(5568).
- Fraction of B_s 's from X decay: $\rho_X^{D0} = (8.6 \pm 1.9 \pm 1.4)\%$

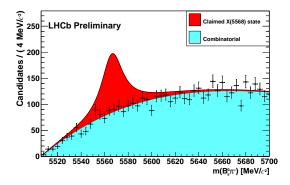



• LHCb should see this. Large and clean samples.


LHCB X(5568) NON-CONFIRMATION LHCB-CONF-2016-004

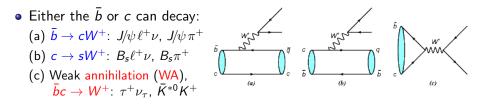
- B_s and π from the same PV. Mass-constrained $\{B_s, D_s, J/\psi\}$.
- No significant signal seen in full Run I. $ho_X^{
 m LHCb} <$ 0.018 @ 95% CL

 Checks done in bins of rapidity. Expected B^{**} structures seen w/ similar analysis chain for B⁰.



• D0 structure remains yet to be confirmed by another experiment.

Hadron Spectroscopy & B_c

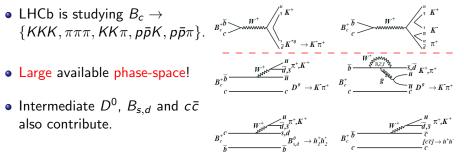

LHCB X(5568) NON-CONFIRMATION LHCB-CONF-2016-004

• Expected signal if 8.6% of B_s 's came from X(5568):

B_c^+ physics @ LHCB

• Lowest bound state of \overline{b} and c quarks. Unlike $\overline{b}b$, $\overline{c}c$; decays only weakly. Unique, flavor asymmetry: t is too heavy.

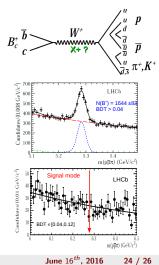
- Experimentally, $b \rightarrow c$ is clearer (due to the J/ψ) but Cabibbo suppressed.
- $c \rightarrow s$ is challenging but Cabibbo favored ($\mathcal{B} \sim 70\%$). First seen in $B_c^+ \rightarrow B_s^0 \pi^+$ by LHCb (1308.4544)
- WA is sensitive to H^+ . CF over B^+ by $|rac{V_{cb}}{V_{ub}}|^2 \sim 100$


B_c^+ physics @ LHCb

• LHCb results dominate many of the measurements, including the world's best measurements on B_c^+ mass and lifetime.

Physics	mode	${\cal L}$ (fb $^{-1}$)
Production, Mass	$\frac{\sigma(B_c^+)\mathcal{B}(B_c^+ \to J/\psi \pi^+)}{\sigma(B^+)\mathcal{B}(B^+ \to J/\psi K^+)}$	0.37 PRL 109 232001, 2 PRL 114 132001
Production	$\frac{\sigma(B_c^+)}{\sigma(B^+)}\mathcal{B}(B_c^+\to B_s^0\pi^+)$	3 PRL 111 181801
Production	$\frac{\dot{\mathcal{B}}(B_c^+ \rightarrow \psi(2S)\pi^+)}{\mathcal{B}(B_c^+ \rightarrow J/\psi \pi^+)}$	1 PRD 87 071103, 3 PRD 92 072007
Decay, Mass	$B_c^+ ightarrow J\!/\psi D_s^{(st)+}$	3 PRD 87 112012
Decay, <mark>Mass</mark>	$B_c^+ ightarrow J\!/\psi par{p}\pi^+$	3 PRL 113 152003
Decay	$B_c^+ \rightarrow J/\psi \pi^+ \pi^- \pi^+$	0.8 PRL 108 251802
Decay	$B^+_c o J\!/\psiK^+$	1 JHEP 09 075
Decay	$B^+_c ightarrow J\!/\psiK^+K^-\pi^+$	3 JHEP 11 094
Decay	$B_c^+ ightarrow J\!/\psi3\pi^+3\pi^-$	3 JHEP05(2014)148
Decay	$\frac{\mathcal{B}(B_c^+ \to J/\psi \pi^+)}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})}$	1 PRD 90 032009
Lifetime	$B_c^+ ightarrow J/\psi \mu^+ \overline{ u}_\mu$	2 EPJC, 74 2839
Lifetime	$B_c^+ ightarrow J/\psi \pi^+$	3 PLB 742 29-37

WA STUDIES VIA CHARMLESS $B_c \rightarrow h^+ h^- h'$


• B_c decays to charmless states proceeds only via $\overline{b}c \to W^+ \to u\{d, s\}$. $|V_{ud}| > |V_{us}|$ implies $\Delta S = 0$ dominates over $\Delta S = 1$.

- Some theory (0907.2256) estimates for (quasi) 2-body decays. $\mathcal{B} < 10^{-6}$. Expect few events in Run I.
- Utlimately, Dalitz analysis, \mathcal{A}_{CP} , ...

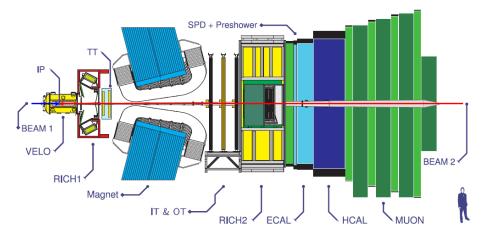
Search for $B_c^+ ightarrow \rho ar{ ho} \pi^+$ (NEW!) LHCB-PAPER-2016-001

- m(pp̄) < 2.85 GeV: near-threshold pp̄ production expected. Also [2.85, 3.15] GeV for the J/ψ region.
- Measured $R_p \equiv \frac{f_c}{f_u} \times \mathcal{B}(B_c^+ \to p\bar{p}\pi^+)$, with $B^+ \to p\bar{p}\pi^+$ as norm. mode
- No signal detected. UL's for 95% CL set as: $R_p < 3.6 \times 10^{-8}$ and $R_p^{J/\psi} < 8.4 \times 10^{-6}$.
- Compatible with LHCb $\mathcal{B}(B_c^+ \to J/\psi \pi^+)$. Hoping for some signal with Run II data.
- $B_c^+ \rightarrow K^+ K^- \pi^+$ in the immediate pipeline.

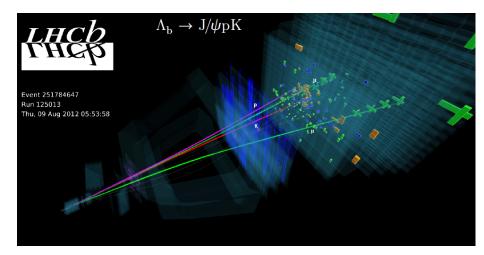
SUMMARY: EXOTICS @ LHCB

- $\Lambda_{\rm b}^{0} \rightarrow J/\psi \, pK^-$: "model-independent" approach confirms Λ^* reflections can't explain data. Exotics present.
- $\Lambda_{\rm b}^0 \rightarrow J/\psi \, p\pi^-$: P_c 's consistent with the $J/\psi \, pK^-$ mode. $R_{\pi/K}$ consistent with Cabibbo suppression.
- $X \rightarrow J/\psi \phi$: confirms 1⁺ for X(4140) and X(4274). X(4140) width larger than CDF. Two new high-mass 0⁺ resonances.
- LHCb does not confirm D0 X(5568). Inputs from ATLAS/CMS?

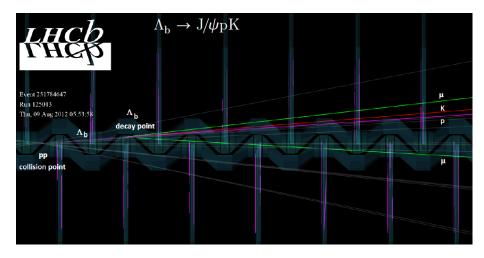
SUMMARY: B_c^+ PHYSICS @ LHCB


- LHCb has performed many measurements in B_c^+ physics in Run I
- Most precise mass and lifetime measurements.
- Many decay modes observed: $J/\psi 3\pi$, $J/\psi K^-$, $\psi(2s)\pi$, $J/\psi D_s^{(*)+}$, $J/\psi 2K\pi$, $J/\psi 3\pi 2\pi$, $B_s\pi$, ...
- New modes being investigated, especially charmless weak annihilation types.
- Searches for excited *B_c* states ongoing as well.

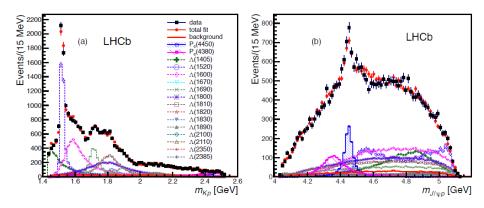
SUMMARY: B_c^+ PHYSICS @ LHCB


- LHCb has performed many measurements in B_c^+ physics in Run I
- Most precise mass and lifetime measurements.
- Many decay modes observed: $J/\psi 3\pi$, $J/\psi K^-$, $\psi(2s)\pi$, $J/\psi D_s^{(*)+}$, $J/\psi 2K\pi$, $J/\psi 3\pi 2\pi$, $B_s\pi$, ...
- New modes being investigated, especially charmless weak annihilation types.
- Searches for excited *B_c* states ongoing as well.

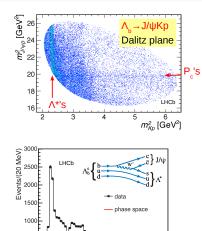
×5 statistics after Run II (end-2018). Much more data coming!.

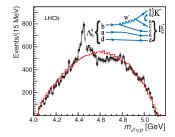

THE LHCB DETECTOR COMPONENTS

A $\Lambda^0_{ m b} \to J\!/\psi\, {\it pK^-}$ event



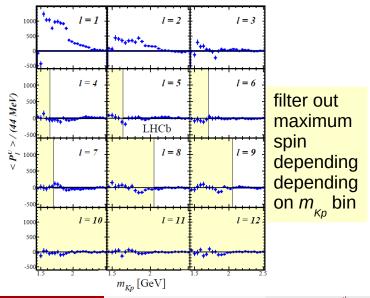
A $\Lambda_{\rm b}^0 \to J/\psi \, \rho K^-$ event in the VeLo




Biplab Dey

THE LHCB DETECTOR COMPONENTS

Pentaquarks in $\Lambda^0_{ m b} ightarrow J\!/\psi\, pK^-$ prl 115, 072001



- Original goal was precise measurement of the $\Lambda_{\rm b}^{0}$ lifetime (PRL 111 102003)
- Unexpected structure seen in $m(J/\psi p)$.
- Λ^* reflections or true resonance(s)?

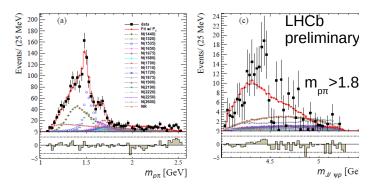
500

1.4 1.6 1.8 2.0 2.2 2.4 *m_{Kp}*[GeV]

THE EXTRACTED MOMENTS IN THE DATA

$\Lambda^0_{ m b} o J\!/\!\psi\, p\pi^-$: N^* resonance models lhcb-paper-2016-015

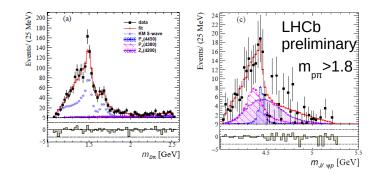
- N(1535) is a Flatte for $n\eta$ opening
- All others are Breit-Wigners with masses and widths fixed to PDG (varied in systematic studies).
- NR S-wave pπ⁻ for threshold enhancement. 1/m² mass-dependence.
- K-matrix model for ¹/₂ S-wave from Bonn-Gatchina (1112.4937).
- $\Lambda_{\rm b}^0 \rightarrow J/\psi \,\Delta^*(\rightarrow p\pi^-)$ is isospin violating and supressed is [ud] in $\Lambda_{\rm b}^0$ is spectator I = 0 diquark. Not considered.


- 15 N^{*} states.
- Reduced (RM): central values. Extended (EM): syst. + signif.

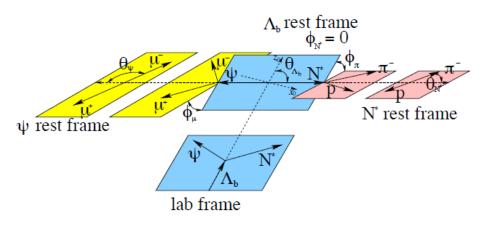
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	State	J^P	M_0 (MeV)	$\Gamma_0 (MeV)$	RM	$\mathbf{E}\mathbf{M}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NR $p\pi$	$1/2^{-}$	-	-	4	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1440)	$1/2^+$	1430	350	3	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N(1520)	$3/2^{-}$	1515	115	3	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1535)	$1/2^{-}$	1535	150	4	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N(1650)	$1/2^{-}$	1655	140	1	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1675)	$5/2^{-}$	1675	150	-3	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1680)	$5/2^{+}$	1685	130	-	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1700)	$3/2^{-}$	1700	150	-	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1710)	$1/2^+$	1710	100	-	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1720)	$3/2^{+}$	1720	250	3	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1875)	$3/2^{-}$	1875	250	-	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1900)	$3/2^+$	1900	200	-	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2190)	$7/2^{-}$	2190	500	-	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N(2220)	$9/2^+$	2250	400	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2250)	$9/2^{-}$	2275	500	-	-
N(2570) 5/2 ⁻ 2570 250 - 3	N(2600)	$11/2^{-}$	2600	650	-	-
	N(2300)	$1/2^+$	2300	340	-	3
Free parameters 40 106	N(2570)	$5/2^{-}$	2570	250	-	3
	Free parameters				40	106

$\Lambda^0_{ m b} ightarrow {J\!/}\psi \, {\it p}\pi^-$: Resonance models LHCB-paper-2016-015

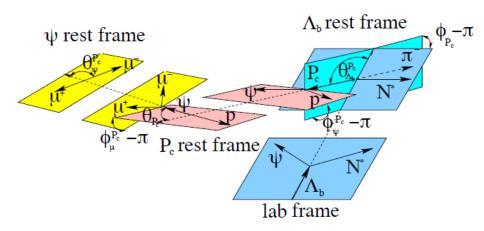
- Each N^* has 4(6) individual LS coupling for spin 1/2(higher)
- "Extended Model": all 15 3-star and 4-star resonances and maximal *LS* couplings. Used for quoting minimum significances and systematics.
- "Reduced model": 6 well-established *N**'s and *L*'s that are significant. Used for nominal results.
- P_c and $Z_c(4200)$: mass, widths and couplings to $J/\psi p/J/\psi \pi$ fixed from previous higher statistics analyses.
- $Z_c(4300)$: only 0.6 σ significant and goes into systematics.


 $\Lambda^0_{
m b} o J\!/\!\psi\, p\pi^-$: only N^* states LHCB-PAPER-2016-015

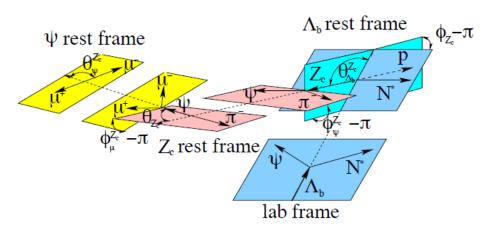
• Extended model, only N^* states.

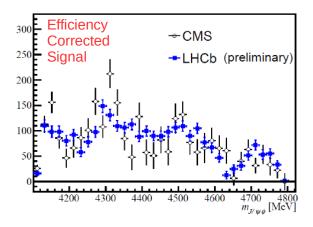

• 6.6σ exotic significance if only established states are used.

$\Lambda^0_{ m b} ightarrow J\!/\!\psi\, p\pi^-$: K-matrix S-wave LHCB-Paper-2016-015



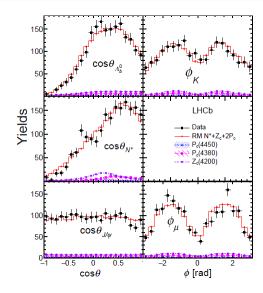
- Instead of isobar model, K-matrix model for the dominant *S*-wave from Bonn-Gatchina.
- Conclusions invariant on significances. Goes into systematics.


$\Lambda^0_{ m b} o J\!/\!\psi\, p\pi^- \colon \, {\it N}^*$ angles LHCB-paper-2016-015


$\Lambda^0_{ m b} o J\!/\!\psi\, p\pi^-$: ${\cal P}^+_c$ angles LHCB-paper-2016-015

$\Lambda^0_{ m b} ightarrow J\!/\!\psi\, p\pi^-$: Z^-_c angles LHCB-paper-2016-015

$arLambda_{ m b}^{0} ightarrow J\!/\!\psi\, p\pi^- \colon \ Z_c^- \ { m Angles}$ lhcb-paper-2016-015



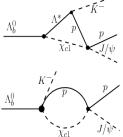
$\Lambda^0_{ m b} o J\!/\psi\, {\it p}\pi^-\colon\, { m Fit}\,\, { m Fractions}\,\,$ LHCB-paper-2016-015

Components $N^* + 2P_c + Z_c$ $N^* + Z_c$ $N^* + 2P_c$ N(1440) 34.0 ± 4.9 33.3 ± 5.0 30.9 ± 4.6 N(1520) 7.6 ± 2.2 4.7 ± 2.0 5.3 ± 2.0 N(1535) 25.4 ± 5.9 31.5 ± 6.4 29.4 ± 5.6 N(1650) 10.5 ± 5.1 11.5 ± 4.7 12.3 ± 4.3 $3.4^{+2.2}_{-1.0}$ 4.3 ± 1.7 $2.3^{+2.0}_{-0.8}$ N(1675) $3.9^{+1.8}_{-1.3}$ 6.3 ± 2.3 $3.7^{+2.4}_{-0.9}$ N(1720)NR $p\pi$ 18.6 ± 3.2 $17.6 \pm 3.5 \quad 19.6 \pm 3.2$ 5.1 ± 1.5 $P_{c}(4380)$ 6.7 ± 1.4 $1.6^{+0.8}_{-0.6}$ $1.5^{+0.8}_{-0.5}$ $P_{c}(4450)$ - $Z_{c}(4200)$ 7.7 ± 2.8 17.2 ± 3.5

Fit fraction in percentage for the fits with the RMN^*

 $arLambda_{
m b}^{0}
ightarrow {J\!/\!\psi} \, {\it p}\pi^-$: Fit quality LHCB-paper-2016-015

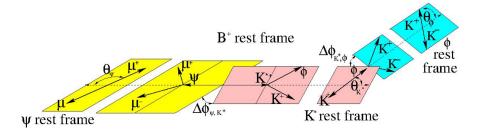
$\Lambda^0_{ m b} ightarrow J\!/\!\psi\, p\pi^-$: Significances LHCB-paper-2016-015

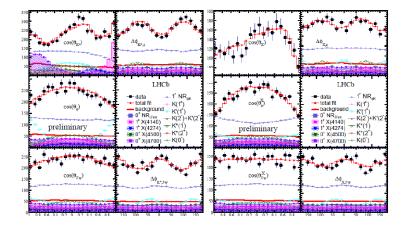

State	$N^* + 2P_c$		$N^* + 2P_c + Z_c$	
	EM	EM'	EM	EM'
Z_c	-	-	1.8	0.4
$P_{c}(4380)$	5.0	2.4	0.0	1.4
$P_{c}(4450)$	1.2	1.5	1.6	1.7
$2P_c$	6.7	3.3	2.5	0.9
$2P_c + Z_c$	-	-	6.6	3.1

 EM': includes two high mass, low-spin N* states observed by BES III (PRL 110 (2013), 022001), but excludes spin > 9/2, which are suppressed at high m_{pπ}.

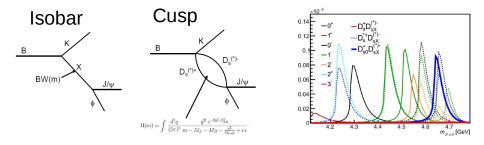
PENTAQUARK INTERPRETATIONS AND OUTLOOK

- Tightly bound quarks? Colored diquark-triquark (Lebed), colored diquark+anti-quark (Maiani).
- Meson-baryon molecules with meson-exchange binding? Karliner-Rosner: narrow $P_c(4450)$ very close to $\Sigma_c \bar{D}^*$.
 - Rescattering effects: $P_c(4450)$ just above $[\chi_{c1}p]$ threshold (Guo).
 - Reproduces phase-motion of $P_c(4450)$, but what about $P_c(4380)$?




Pentaquark outlook (CNTD.)

- Experimental program: new decay modes and production mechanisms. Confirmation by other experiments. Where are the ground states?
- Different final states: $\Upsilon \to J/\psi p\bar{p}, B^0 \to J/\psi p\bar{p}, \Lambda_b^0 \to J/\psi p\pi K_S^0$.
- New open-charm and charmless decay modes of P_c : $\Lambda^0_b \rightarrow \chi_{c1}(1P)pK$, $\Lambda^0_b \rightarrow \Lambda^+_c \bar{D}^0 K^-$, $\Lambda^0_b \rightarrow \Sigma^+_c D^0 K^-$
- Pentaquark multiplets: $\Lambda^0_{
 m b} o J\!/\psi \, p\pi K^0_S$. $\Lambda^0_{
 m b} o J\!/\psi \, \Lambda \phi$



$B^+ ightarrow J\!/\psi\,\phi K^+$ fit quality in the angles

$B^+ \to J/\psi \, \phi K^+$: CUSPS

- Opening of threshold, not necessary bound molecular states can cause "peaking"-like structures.
- Coupled-channel cusp models, Swanson: 1504.07952, 1409.3291.
 Internal L = 0, so

K^{*+} summary for $B^+ \rightarrow J/\psi \, \phi K^+$

- Robust tapestry of K^* states from amplitude analysis
- 1⁺: dominant, w/ $K_1(1650)$ at 7.6 σ .
- 2⁻: two resonances consistent w/ $K_2(1770)$ and $K_2(1820)$
- 1⁻: First observation of $K^*(1680) \rightarrow \phi K$
- 2⁺: 5.4 σ evidence for a broad resonance consistent w/ $K^*(1980)$
- 0⁻: 3.5 σ evidence for the earlier observed $K_0^*(1830)$